INTRODUCTION
Neonatal sepsis or septicemia is clinical syndromes during the first month of life caused by systemic responses to infection and supported by discovering microorganisms in the blood cultures. Sepsis is a leading cause of neonatal mortality, especially in developing countries. It is estimated that mortality caused by sepsis is about 30–50% of all neonatal deaths. Indonesian perinatal mortality data reported that 29.9% of deaths occurred on the first day of life and 75.6% at one week after birth. Babies who are born with risk factors have a greater possibility to have sepsis. In terms of sepsis timing, early neonatal sepsis occurs within the first three days of life. Several obstetric and neonatal factors have been associated with an increased risk of neonatal infection. The presence of any of those factors alone is not an indication for a complete sepsis workup or antibiotic therapy. Nonetheless, the presence of a set of risk factors should significantly enhance the suspicion of neonatal sepsis.

Various pathomechanisms have been proposed in neonatal sepsis. Oxidative stress due to the general inflammatory response has been pointed as the seed for sepsis development. Oxidative stress is mediated by several enzymatic reactions, originally intended to establish a defense system against microbial invasion. This enzymatic defense is orchestrated by endogenous enzymes through the various scavenging reactions of reactive oxygen species (ROS) and nitrogen metabolites derived from polymorphonuclear neutrophils (PMN), the well-known process called the respiratory burst. Hydrogen peroxide (H_2O_2) as the latter product during respiratory burst will be transformed into antimicrobial compounds by peroxidase enzymes found in blood and saliva. Peroxidase catalyzes the oxidation of halide and pseudohalide ions such as iodide (I^-), bromide (Br^-), chloride (Cl^-) and thiocyanate (SCN^-) as its cosubstrate in the presence of H_2O_2, leading to the production of a much more bactericidal and fungicidal agent. SCN^- is the primary substrate for lactoperoxidase (LPO), and the closely related salivary peroxidase (SPO), the preferred substrate for myeloperoxidase (MPO).

Although clinical reports are consistent with ROS involvement in neonatal sepsis and its complications, strangely, not much conclusive evidence supports the beneficial effect of antioxidants treatment in sepsis. It may indicate that other
mediators of cellular stress, such as reactive carbonyl species (RCS), play a much larger role. Research has shown that various, heterogeneous groups of RCS emerged as essential mediators of cellular dysfunction. These compounds are relatively stable and quickly diffuse out of the cell. Thus, these molecules can exert an Effect far from the formation site. Like many other oxidants, several of the most potent RCS is derived from the glycolysis process. Among many, Methylglyoxal (MG) is a highly reactive electrophilic α,β-dicarbonyl aldehyde compound, one of several compounds of the RCS group, produced endogenously during glycolysis.

During sepsis, glycolytic contribution to energy production increases about 10% as a compensatory mechanism to sustain the energy supply. Glycolytic enhancements might be related to or stimulated by mediators produced during the systemic inflammatory response. The Glycolysis inevitably produces methylglyoxals (MGs) as a by-product, and the rate of formation is correlated with the rate of glycolysis. In advance, MG is a pro-oxidant and an AGEs precursor. MG also induces hydrogen peroxide production in neutrophils and platelets. From those pathological conditions, it can be assumed that the energy generation pathways, inflammatory, and oxidative processes have such relationships. However, there has been no research that relates these forms of metabolic stress in neonatal sepsis. Therefore, this study aimed to measure MGs, SCN, and H₂O₂ level in the saliva of newborns at risk of sepsis, the main objective was to investigate the used of MG as biomarkers in neonates with septicemia risk which, can be used as an early marker for early-onset neonatal sepsis.

METHODS

This study is a prospective cross-sectional study approved by the Research Ethics Committee Faculty of Medicine Lambung Mangkurat University / Ulin General Hospital (No.012/KEPK-FK UNLAM/EC/IV/2015). Saliva specimens were taken from 30 newborns at risk of sepsis and 30 healthy newborns (control group) in which their parents had signed the informed consent. The study was conducted from June to August 2014 at the Neonatology Division of Ulin General Hospital Banjarmasin. Samples were examined in the Biochemistry Laboratory at the Faculty of Medicine Lambung Mangkurat University, Banjarmasin. The inclusion criteria were newborns from mothers with a major risk factor or two minor risk factors. Major risk factors were rupture of membranes > 24 hours, intrapartum fever (>38 °C), chorioamnionitis, a persistent fetal heart rate > 160 beats/minute, and foul-smelling amniotic fluid. Minor risk factors were rupture of membrane > 12 hours, intrapartum fever (> 37.5 °C), low Apgar score (< 5 at the 1st minute, < 7 at the 5th minute), very low birth weight babies (<1500 grams), gestational age < 37 weeks, multiple pregnancies, foul-smelling vaginal discharge, maternal uterine tract infection (UTI) / suspected untreated UTI. Exclusion criteria are babies born outside Ulin General Hospital Banjarmasin, newborns with severe asphyxia, newborns with major congenital abnormalities, low birth weight (<2500 grams).

Protein Carbonyl Assay

The modified dinitro-phenylhydrazine (DNPH) method was used to measure the Carbonyl compounds. From each test solution, a 0.5 ml solution was. It was divided into two tubes, 0.25 ml in volume in each tube. The two tubes are a sample tube (A) and a blank/non-sample tube (B). Each of the sample tubes (tube A) was given a drop of 1 ml of DNPH, and each blank tube (tube B) were 1 ml HCl 2.5 M. All the tubes were incubated for 45 minutes at room temperature and protected from light, then shaken with vortex for 15 minutes. A milliliter of trichloroacetic acid (TCA) 20% was added into each tube (A and B) and then incubated for another 5 minutes. Tubes were recentrifuged (1400 rpm) for about 5 minutes to separate the supernatant. The pellets were further centrifuged and washed three times with the addition of 1 ml ethanol-ethyl acetate mixture. The final step was to measure carbonyl compounds by adding 1 ml of urea (9M) and then incubated and shaken for 10 minutes at 37 °C. The solutions were centrifuged again for 5 minutes at 1400 rpm. The absorbance of the solution was measured at λ = 390 nm. Protein breakdown was measured by using the following formula.

\[C = \frac{A}{(e \cdot b)} \]

(A : absorbance, e : extinction coefficient 22000 mMcm⁻¹, b : 1 cm)

Methylglyoxal (MGs) Assay and measurement

A total of 25 µL of the homogenate was added to 350 µL DNPH (0.1% DNPH in 2 N HCl), and then 2.125 ml distilled water was added. It is incubated for 15 minutes at 37°C, then 1.5 ml NaOH 10%. Absorbance was measured at λ = 576 nm. Methylglyoxal level was determined by calculating the percentage of MGs absorbance compared with the carbonyl compounds. The formula to determine the MGs level is presented below.

\[\text{MGs level (%) = } \frac{\text{MGs absorbance}}{\text{Carbonyl absorbance}} \times 100\% \]

Hydrogen Peroxide Assay

Five milliliters of phosphate buffer (pH 7 and concentration of 0.01 M) was mixed with 1 mL of saliva and was homogenized slowly. A milliliter of the mixture was taken and was mixed with 2 mL dichromat/glacial acetate. It was heated for 10 minutes in boiling water to remove the blue precipitate and produce a green solution. The absorbance was measured at λ = 570 nm. A Standart curve was used to determine how much of the remaining H₂O₂ when the reaction was stopped by acetic acid.

Thiocyanate Assay

Standart solutions contain 800 µL HCl 0,1 N was mixed with 100 µL FeCl₃ 0,1 M and 100 µL KSCN 0,1 M. The mixture was centrifuged at 1000 rpm for 10 minutes. Absorbance was measured at λ = 450 nm (Aₐ). Samples solution contain 800 µL HCl 0,1 N was mixed with 100 µL FeCl₃ 0,1 M and 100 µL saliva. The mixture was centrifuged at 1000 rpm for 1 minute. Absorbance was measured at λ = 450 nm (Aₒ). The following formula measured thiocyanate level (C₁) in saliva:

\[C₁ = \frac{A₁ \times Co}{Ao} \]
Statistical Methods

Data from both groups were analyzed statistically for comparison. The normal distribution of the variables was tested with the Kolmogorov-Smirnov test. The mean comparison of the control group variables with the case group was analyzed with Student's t test (if the requirement was met, otherwise the equivalent non-parametric test was used). P-values of 0.05 or less were considered statistically significant.

RESULTS

Subjects’ characteristics in both groups were presented in Table 1. Risk factors of 30 subjects in the case group were presented in Table 2. Each subject may have more than one risk factor.

Overall, there were significant differences between the mean of the variables measured in the newborn at risk of sepsis (case group) and the control group. We found mean Thiocyanate (SCN) level in the control group is 19.49 mmol, and in the case group mean SCN level is 28.91 mmol. It showed that the SCN level in the case group was higher than the control. From Kolmogorov-Smirnov test, data have normal and homogeneous distribution. To assess the difference between both groups, data were analyzed using an independent t-test, and the result showed a significant difference between the groups (p = 0.03). In contrast, the mean H₂O₂ level in the control group was higher (37.47 mmol) than in the case group (32.56 mmol). From the Kolmogorov-Smirnov test, the data was known to have normal distribution. The statistical test results using independent t-test showed a significant difference between the groups (p = 0.04). Lastly, the mean MG level in the control group is lower (0.005 %) than in the case group (0.01 %). From the Kolmogorov-Smirnov test, data have normal and homogeneous distribution. The independent t-test showed that there is a significant difference between the groups (p = 0.03). The mean level of SCN, H₂O₂ and MG in both groups is presented in Figure 1.

DISCUSSION

The saliva defense mechanism is the first line against harmful microorganisms.⁷,⁹ Saliva defense system inhibits microorganisms through various in vivo activity of salivary antimicrobials.²⁵ One of those salivary microbial is an enzymatic defense mechanism which is played by the respiratory burst.⁶,⁷ From this study, there was a significant difference between thiocyanate (SCN) level between the groups where the saliva of neonates at risk of sepsis has higher levels of SCN. We also found decreased levels of H₂O₂ in the saliva of neonates with the risk of sepsis. This result indicates increased respiratory burst activity in the saliva of neonates with the risk of sepsis. High levels of Thiocyanate are required to activate LPO and MPO during sepsis. Under physiological condition, biological fluids such as saliva, breastmilk and tears only contain millimolar levels of SCN.²⁵ The levels of H₂O₂ was found lower in case groups. The capitalization of H₂O₂ causes it into antimicrobial end products.

Respiratory burst produced by the antimicrobial system through ROS formation, which catalyzed by NADPH-oxidase. This reaction produced a superoxide radical that was then further modified to H₂O₂ and hydroxyl radicals (OH) by superoxide dismutase (SOD), H₂O₂ will then be transformed into antimicrobial compounds by peroxidase enzymes in saliva. The lactoperoxidase (LPO) and myeloperoxidase (MPO) are the two principal components of the peroxidase system in saliva and work together to catalyze the oxidation of thiocyanate ions (SCN⁻) by H₂O₂.⁸,⁹ The resulting product of the reaction is the more potent bactericidal and fungicidal compound such as OSCN⁻, HOSCN, O₂SCN⁻, and O₂(SCN)⁻.¹⁰,²⁵,²⁶ Salivary LPO-SCN-H₂O₂ has been proven to produce a positive unidirectional antimicrobial system through the various antibacterial mechanism of action.⁶,⁷,¹¹

Another finding in this study was the difference in MG level between the control and case groups. MG levels were found

Table 1. Characteristics of subjects

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Control group (n=30)</th>
<th>Case group (n=30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Female</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>Delivery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spontaneous delivery</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Breech extraction</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Caesarian section</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Vacuum extraction</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2. Risk factors of subjects

<table>
<thead>
<tr>
<th>Risk factors</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membranes ruptured for > 24 hours</td>
<td>9</td>
</tr>
<tr>
<td>Membranes ruptured for > 24 hours & Foul-smelling vaginal discharge</td>
<td>5</td>
</tr>
<tr>
<td>Foul-smelling vaginal discharge & Maternal UTI or suspected untreated maternal UTI</td>
<td>5</td>
</tr>
<tr>
<td>Membranes ruptured for > 12 hours & Maternal fever with intrapartum temperature > 38.5 °C</td>
<td>4</td>
</tr>
<tr>
<td>Foul-smelling vaginal discharge & Gestational age < 37 weeks</td>
<td>3</td>
</tr>
<tr>
<td>Membranes ruptured for > 24 hours & Gestational age < 37 weeks</td>
<td>2</td>
</tr>
<tr>
<td>Foul-smelling amniotic fluid & Maternal UTI or suspected untreated maternal UTI</td>
<td>2</td>
</tr>
</tbody>
</table>
The rate of glucose uptake and glycolysis were thought to be influenced positively by mediators produced during the systemic inflammatory response in sepsis. Furthermore, it is also believed that any metabolic pathways that stimulate glycolytic activity may also increase the formation of MG, including the glycolysis pathway under physiological conditions and the activated polyolfructose pathway during the hyperglycemic conditions. The latter metabolic activity is one of the clinical features in patients with sepsis. As the glucose metabolism happens, MG is formed in a significant amount (approximately 0.1% of glucose flux) as a normal by-product resulted from the fragmentation of the triosephosphate glyeraldehyde-3-phosphate (GAP) and dihydroxyacetone phosphate (DHAP). These MG then underwent various reactions, as it readily reacts with lipids, nucleic acids, lysine and arginine residues of proteins to form AGEs with downstream inflammatory effects. Direct changes in protein function due to MG modification triggers an inflammatory response at the cellular level. In sepsis, modification of different proteins by MG, particularly in mitochondria, increased the oxidative load, further aggravating cellular dysfunction and inflammation. Oxidative modifications of proteins are more stable than lipids, making proteins suitable for oxidative stress markers. The schematic metabolism and mechanism of respiratory burst, MG, and MG-derived AGEs driven cell dysfunction or inflammation or both in human sepsis is presented in Figure 2. Due to these biochemical characteristics, MG is believed to be a potential reliable marker in neonatal sepsis. Studies showed that MG is a better biomarker to predict survival in patients with septic shock than the routine and established biomarkers like C-reactive protein (CRP), procalcitonin (PCT), IL-6, and sCD14-ST.

CONCLUSION

In this study, we found the increased levels of SCN⁻, H₂O₂ and the decreased levels of H₂O₂ in neonates’ saliva with the risk of sepsis. Increased SCN⁻ and MG levels followed by a decreased level of H₂O₂ in this study suggest that MG levels
metabolism is an important and generally overlooked biochemical pathway related to oxidative stress in early-onset neonatal sepsis pathomechanism. It also suggests that there is a relationship between these two forms of metabolic stress marker. Therefore, MG measurements in routine diagnostics of neonates with suspected sepsis should be taken into consideration. Further investigations are required to determine whether MG's diagnostic and prognostic value can be confirmed and validated to be used clinically.

ACKNOWLEDGEMENT
We thank all technicians in Biochemistry Laboratory at Faculty of Medicine of Lambung Mangkurat University for helping with this experiment.

FUNDING
No additional funding or third-party financial support had contributed to this study.

CONFLICT OF INTEREST
All authors declare no conflict of interest.

AUTHOR CONTRIBUTION
All authors have contributed substantially during all phases of the study, including drafting and revising the manuscript, giving final approval, and agreeing to be accountable.

REFERENCES